
i

ENTTEC RDM STACK

Controller Library

Public Functions

Conforms to RDM Standard ANSI E1.20 -2006

www.enttec.com/rdm

Version 1.65

25/05/2007

1

ENTTEC RDM Controller Stack Documentation

Functions

• uint16_t RDMInit (int DeviceNum, int *VersionMSB, int *VersionLSB)

• void RDMTick (void)

• void RDMComms (void)

• uint16_t RDMDiscovery(uint8_t flag, volatile uint8_t* Ready, uint8_t* Message)

• uint16_t GetDeviceCount (void)

• void GetDeviceID(uint8_t position, uint8_t * DeviceArray)

• void RDMSet (uint8_t *DestinationUID, uint16_t ParamID, uint8_t DataLength, void* Data,

void* ResponseData, uint32_t *max_size, uint32_t Timeout,uint16_t Sub_Device, uint16_t

ResponseType)

• void RDMGet (uint8_t *DestinationUID, uint16_t ParamID, uint8_t DataLength, void* Data,

void* ResponseData, uint32_t *max_size, uint32_t Timeout, uint16_t Sub_Device ,uint16_t

ResponseType)

• void ClosePort (void)

Detailed Description

This documentation covers all the functions required to use ENTTEC RDM

Stack for Controllers. The included library ‘Controller_Lib.lib’ is a Visual C
library intended to be used with C/C++ code compiled under Visual Studio
environment.

Note:

The way RDM Stack has been defined, it is imperative that the RDMTick()

Function [Timer Control] and the RDMComms() Function [Send / Receive RDM]

should be called in separate threads (run every millisecond).

2

Function Documentation

uint16_t RDMInit (int DeviceNum, int * VersionMSB, int * VersionLSB)

Initializes the data structures used in the RDM Controller Stack. Also opens the

device specified and makes the USB Pro Ready to Send / Receive RDM Packets.

The ‘DeviceNum’ is the no. of “USB PRO” connected to the PC (sequentially

starting from 1).

A VersionMSB of ‘2’ indicates that the USB Pro supports RDM. Make sure that the

VersionMSB is checked for, before proceeding further. Any versions before 2.xx

do not support RDM natively.

Parameters:

Device Num integer

VersionMSB Pro Firmware Version MSB (int*)

VersionLSB Pro Firmware Version LSB (int*)

Returns:

Returns TRUE (1) on Success, and FALSE (0) if it fails to open the port.

void RDMTick (void)

Calls the Stack Timer Routine that enables the RDM Stack to send packets based

on all the possible scenarios. The Stack stores each packet (header) sent, and

matches the response to the sent RDM Packet via this Timer functionality.

This function must be run via a timer thread that runs every millisecond for an

accurate Send / Receive cycle to succeed.

All RDM Packets stored in the RDM Stack are sent via this routine. It is therefore

necessary that this function is called separately in its own thread (that runs every

millisecond).

Warning:

This function must be called in a separate thread (running every 1 millisecond

for accurate response)

Parameters:

void

Returns:

void

3

void RDMComms (void)

Enables the Send and Receive functionality of the Controller Stack, thus, allowing

the Controller to “wait for a valid response” for every successful RDM packet

sent. Since this routine may keep the Controller waiting for a long time, it must

be run in a separate thread running every 10 milliseconds.

Warning:

This function must be called in a separate thread (running every 10

milliseconds)

Parameters:

void

Returns:

void

uint16_t RDMDiscovery(uint8_t flag, volatile uint8_t* Ready, uint8_t* Message)

Calls the RDM discovery routine, which is a recursive process of finding all the

Controller devices connected to the DMX network. On completion it populates

the device List with the device Id's of the devices found.

Normally Discovery begins by sending an “unmute” RDM packet to all the devices

connected, and finds the RDM compatible devices by muting those successfully

found.

After a successful discovery please use the GetDeviceCount() function to check if

the Discovery found any devices.

Parameters:

flag (integer) value = 1 Continuous Discovery

(doesn't “Unmute” All devices before beginning discovery

branch)

flag (integer) value = 0 Normal Discovery

 ready will be set to 1; when Discovery completes

 Message will be updated for any debug messages during Discovery

Returns:

Number of Devices “found in the last iteration”.

 (Keep doing Discovery till it returns 0).

uint16_t GetDeviceCount (void)

Returns the number of devices found (in the Device list), after a successful

discovery process.

Parameters:

void

Returns:

no. of devices found after discovery

4

void GetDeviceID(uint8_t position, uint8_t * DeviceUID)

retrieve the UID of the selected device in the “Found Device List”. Please refer to

the examples section for more detail on how to use this function to get the UID of
all the found devices.

Parameters:

Position index of the Device in tha Found Devices List

DeviceUID an array of integer to hold 6 byte UID for this Device.

void RDMSet (uint8_t * DestinationUID, uint16_t ParamID, uint8_t DataLength, void*

Data, void * Response_Data, uint32_t * Response_Size_Expected, uint32_t Timeout,

uint16_t Sub_Device, uint16_t* ResponseType)

The RDMSet routine is used to send a RDM SET Request. The function forms the

RDM SET request based on the parameters passed. Among the parameters are

the pointers to Data Structure holding the Response (if any), and an expected
Length for the Response.

Since a RDM SET Request would usually keep waiting for the response (which

could vary according to the time defined via Responder), this function also takes

as a parameter a Timeout (in millisecond) that is the max. time the SET function
should wait for a response.

Parameters:

DestinationUID pointer to an array of integers holding the Device ID (6

bytes)

 where the request is to be sent. (Destination Device ID)

ParamID 2 byte long Parameter ID (integer)

DataLength Length of the Data to be sent in the Set Request (integer)

Data pointer to a Data Structure holding the data to send

Response_Data pointer to a structure that will hold the response.

Response_Size_Expected Maximum Size Expected for the Response

Timeout Maximum time that the controller stack should wait for a

response (in millisecond) When = 0 means NO_TIMEOUT

 Sub_Device Use 0 for Root Device, Else use a valid sub_device_id (1 -512)

ResponseType One of either:-
 // Response Types

#define RESPONSE_TYPE_ACK 0x00
#define RESPONSE_TYPE_ACK_TIMER 0x01
#define RESPONSE_TYPE_NACK_REASON 0x02
#define RESPONSE_TYPE_ACK_OVERFLOW 0x03

Returns:

void

5

void RDMGet (uint8_t * DestinationUID, uint16_t ParamID, uint8_t DataLength, void *

Data, void * Response_Data, uint32_t * Response_Size_Expected, uint32_t Timeout,

uint16_t Sub_Device, uint16_t* ResponseType)

The RDMGet routine is used to send a RDM GET Request.. The function forms the

RDM GET request based on the parameters passed. Among the parameters are

the pointers to Data Structure holding the Response (if any), and an expected

Length for the Response.

Since a RDM GET Request would usually keep waiting for the response (which

could vary according to the time defined via Responder), this function also takes

as a parameter a Timeout (in millisecond) that is the max. time the GET function

should wait for a response.

Parameters:

DestinationUID pointer to an array of integers holding the Device ID (6

bytes)

 where the request is to be sent. (Destination Device ID)

ParamID 2 byte long Parameter ID (integer)

DataLength Length of the Data to be sent in the Get Request (integer)

Data pointer to a Data Structure holding the data to send

Response_Data pointer to a structure that will hold the response.

Response_Size_Expected Maximum Size Expected for the Response

Timeout Maximum time that the controller stack should wait for a

response (in millisecond) When = 0 means NO_TIMEOUT

 Sub_Device Use 0 for Root Device, Else use a valid sub_device_id (1 -512)

ResponseType One of either:-
 // Response Types

#define RESPONSE_TYPE_ACK 0x00
#define RESPONSE_TYPE_ACK_TIMER 0x01
#define RESPONSE_TYPE_NACK_REASON 0x02
#define RESPONSE_TYPE_ACK_OVERFLOW 0x03

Returns:

void

void ClosePort (void)

Closes the port that was opened for RDM Communication. And Frees all the data

structures used in the RDM Stack.

Parameters:

void

Returns:

void

6

Function Examples [C++]

Get Devices/ Device Count / Device ID

 // Populate the Device List
 int num_devices = GetDeviceCount();

 for(int i =0; i < num_devices; i++)
 {
 uint8_t *Dev = new uint8_t[6];
 GetDeviceID(i,Dev);

 // Send a GET SUPPORTED_PARAMETERS Request to this Device

 }

void RDMSet (uint8_t * DestinationUID, uint16_t ParamID, uint8_t DataLength, uint8_t *

Data, uint8_t * Response_Data, uint32_t * Response_Size_Expected, uint32_t Timeout,

uint16_t* Response_Type)

// Form the Request parameters
 uint8_t Response_Data[1220];
 uint32_t Response_Len = 1220;
 uint16_t Response_Type;

 uint8_t* Data = “ Please reset your clock “;
 uint32_t Length = (uint32_t) strlen(Data);

uint8_t DeviceSelected[] = {0x12,0x34,0x56,0x78,0x9A,0xBC};

// Once called we would have to wait till a response is received for
the function to return. 0 means NO_TIMEOUT . ROOT_DEVICE 0x0000

RDMSet(DeviceSelected,SET_TIMER,Length,(uint8_t*)Data,Response_Data,

&Response_Len,NO_TIMEOUT,ROOT_DEVICE,& Response_Type);

7

void RDMGet (uint8_t * DestinationUID, uint16_t ParamID, uint8_t DataLength, uint8_t *

Data, uint8_t * Response_Data, uint32_t * Response_Size_Expected, uint32_t Timeout,

uint16_t* Response_Type)

// Form the Request parameters
 uint8_t Response_Data[150];
 uint32_t Res_Len = 150;

uint8_t DeviceSelected[] = {0x12,0x34,0x56,0x78,0x9A,0xBC};

// Sending no data in the request
RDMGet (DeviceSelected,DEVICE_INFO,0,NULL,Response_Data,&Res_Len,200,
ROOT_DEVICE, &Response_Type);

